

NASA In-Situ Resource Utilization (ISRU) Development & Field Testing

Presentation to the HAWAII'S AEROSPACE INDUSTRY: THE NEXT FRONTIER August 21, 2008

Hawaii State Capital Auditorium

William Larson/NASA Kennedy Space Center Gerald Sanders/NASA Johnson Space Center

What is Lunar In-Situ Resource Utilization (ISRU)?

ISRU involves any hardware or operation that harnesses and utilizes 'in-situ' resources to create products and services for robotic and human exploration

In-Situ Lunar Resources

- 'Natural' Lunar Resources
- Discarded Materials

Lunar ISRU Products and Services

- Excavation, Site Preparation, and Outpost Deployment/Emplacement
- Mission Consumable Production
- Outpost Growth and Self-Sufficiency

Benefits of ISRU

- Increased science and exploration hardware (instead of consumables)
- Increased safety, crew exploration time, and self-sufficiency
- Technology spin-in/spin-offs help recycling on Earth & space economy

Potential Missions Include:

Precursor Ground Truth Missions

Precursor Oxygen Extraction from Regolith Missions

Outpost Oxygen Extraction from Regolith

Outpost Site Preparations

Consumable Production for Lunar Outpost

Oxygen (O₂) Production from Regolith

- 1 MT/yr production rate for ECLSS/EVA closure
- 0.9 MT/yr to make water for ECLSS/EVA closure with lander propellant scavenging
- 10 MT/yr production rate during Outpost operation would also support refueling 2 ascent vehicles per year to further increase payload delivery capability
- Options include: Hydrogen reduction (1 to 5% kg O₂/kg bulk regolith), Methane Carbothermal reduction (10 to 28%), and Molten electrolysis (up to 40%)

In-Situ Water Production

- 1 MT/yr water needed for life support/EVA closure
- ~3 MT water needed habitat radiation shielding (3 habitats of 1000 kg each)
- ~225 kg water needed for each Small Pressurized Rover thermal/radiation system
- Options include:
 - Scavenge hydrogen from each LSAM descent stage after landing and add to in-situ oxygen to make 1 MT/yr of water (40 to 60 kg of H₂ remains after all O₂ is consumed to make water)
 - Post-ECLSS crew waste/plastic trash processing to complete extraction of water
 - Polar water/ice extraction and processing only needed if large scale in-situ propellant production is used incorporated into the architecture

In-Situ Methane Production

- ~2100 kg/yr supports refueling 2 ascent vehicles per year.
- Capability can be used to initially supports LSAM Ascent 'top-off' in case of leakage, power loss, or increased payload to orbit before completely refueling ascent vehicle
- Options include:
 - Utilize methane produced by habitat life support system (400-500 kg/yr for crew of 4)
 - Process plastic trash and crew waste with in-situ oxygen to make methane

Lunar Regolith Processing Options Under Consideration

Lunar Mare Regolith

Ilmenite - 15%

FeO•TiO₂ 98.5%

Pyroxene - 50%

CaO•SiO ₂	36.7%
MgO•SiO ₂	29.2%
FeO•SiO ₂	17.6%
Al ₂ O ₃ •SiŌ ₂	9.6%
TiO ₂ •SiO ₂	6.9%

Olivine - 15%

2MgO•SiO ₂	56.6%
2FeO•SiO ₂	42.7%

Anorthite - 20%

CaO•Al₂O₃•SiO₂ 97.7%

Hydrogen Reduction of Ilmenite/glass Process

Methane Reduction (Carbothermal)
Process

Molten Electrolysis

Solar Wind & Polar Ice/H₂

Hydrogen (H₂) 50 - 150 ppm
Helium (He) 3 - 50 ppm
Helium-3 (³He) 10⁻² ppm
Carbon (C) 100 - 150 ppm
Polar Hydrogen H₂O/H₂ 1 - 10%

Volatile Extraction

ISRU Excavation & Oxygen Production Examples & Analogies

- Excavation rates required for 10 MT O₂/yr production range based on extraction efficiency of process selected and location
 - Hydrogen reduction at poles (~1% extraction efficiency): 150 kg/hr
 - Carbothermal reduction (~14% extraction efficiency): 12 kg/hr
 - Electrowinning (up to 40%): 4 kg/hr
- Laboratory tests showed high excavation rates of to 250 kg/hr for small bucket wheeled vehicle (<150 kg)

CRATOS rover at GRC

IR&D rover at LMA

Bucketwheel at NORCAT

lunar regolith

to 1 Metric Ton of

- Oxygen Processing Reactors are not large, even for 1% efficient systems (H₂ Reduction at poles with no beneficiation)
 - Module sized for 670 kg O₂ per year
 - Each reactor processes 10 kg/batch of regolith
 - Each reactor is 30" L x 8" D (76 cm x 20 cm)

H₂ Reduction reactor at JSC

10 MT of oxygen per year requires excavation of a soccer field to a depth of 0.6 to 8 cm! (1% & 14% efficiencies)

1 MT of oxygen per year requires an excavation rate of <1/2 cups per minute! (1% efficiency - 70% light) (worst case)

 10 MT of oxygen per year requires a regolith excavation rate of ~4 cups per minute!

300 MT of oxygen per year requires a regolith excavation rate of ~10 cups per minute!

(14% efficiency - 70% time-polar region)

ISRU Development Strategy

- Develop ISRU Technology and Systems in 4 Phases (2-4 years each phase)
 - Phase I: Demonstrate Feasibility
 - Phase II: Evolve System w/ Improved Technologies
 - Phase III: Test and Modify for Lunar Environment Applicability (1/6-g, vacuum, etc.)
 - Phase IV: Develop 1 or more systems to TRL 6 Before Start of Flight development
- Coordinate development of ISRU Technologies and Systems with Other Surface Elements
 - Identify common requirements, processes, hardware, and operations
 - Coordinate development of hardware to align Project schedule & milestones
- Utilize laboratory and analog site demonstrations to:
 - Demonstrate needed capabilities and operations for Lunar Outpost and technology/system 'customers'
 - Demonstrate evolution and incremental growth in technologies and systems for Capabilities (ex. digging deeper); Performance (ex. lower power); and Duration (ex. more autonomy or more robustness).
 - Perform joint hardware and operation tests with other Surface Element Projects
 - Develop partnerships and relationships across NASA and other US government agencies, and with International Partners, Industry, and Academia
- Be prepared to participate in robotic precursor missions should opportunity arise
 - Site characterization and resource mapping
 - Subscale ISRU demonstrations for subsequent mission risk reduction
 - Outpost 'dress rehearsal' mission

Why Perform Analog Field Tests?

Concrete Benefits of Field/Analog Testing

- Mature Technology
- Evaluate Lunar Architecture Concepts Under Applicable Conditions
- Evaluate Operations & Procedures
- Integrate and Test Hardware

Intrinsic Benefits of Field/Analog Testing

- Develop Partnerships
- Develop Teams and Trust Early
- Develop Data Exchange & Interactions with International Partners
- Outreach and Public Education

ISRU Analog and Field Test Site Requirements

- Minimum vegetation
- 'Good' Weather
 - Minimum rain and wind
 - Lots of sunlight
 - Reasonable temperatures (unless specifically needed for test objectives)
- Open and relatively flat areas for 'Outpost-like' operations
- Varied terrain and rock features for resource prospecting and science operations
- Local material with similar physical characteristics to the Moon for excavation and site preparation
- Local material with similar mineral characteristics to the Moon for resource prospecting, oxygen extraction, and processing
- Local material that can be modified, processed, and permanently altered for site preparation and construction

Why Perform an ISRU Field Demo? Why Hawaii?

Why an ISRU Field Demo?

- Demonstrates lunar ISRU feasibility for Outpost needs at relevant Outpost scale operations.
- It forces design decisions to be made and gets hardware out of the laboratory
- Initiates integration of ISRU with other NASA Technology Projects and Science Mission Directorate for requirements, schedules, hardware, and operations
 - Begin standardizing interfaces, connections, and modular units
- Initiates opportunity for collaborations with International Space Agencies in non-flight situation (CSA, JAXA, DLR) and allows data and ITAR issues to be worked
- Builds teams and trust which will be important when actual flight hardware and development issues arise in the future

Why A Volcanic Site in Hawaii?

- Terrain, rock distribution, and material/soil provides good simulation for lunar polar region, and tests hardware and operations beyond ability of laboratory and 'rock yards'
 - Apollo field testing "deemed most relevant site" by Astronauts
- Infrastructure is very close to site of testing minimizing time wasted
- PISCES is 'hosting' ISRU field test. Performing all work on permits and establishing site, arranging food/lodging, providing hardware assembly and checkout facilities, providing site infrastructure and support (tents, toilets, food, etc.)
- State of Hawaii and Innovative Partnership Program (IPP) are providing funding to significantly reduce cost
- Central location for US, Canada, and Japan to partner and ship hardware

ISRU Field Test – Hawaii 2008

Key Field Test Personnel

- Jerry Sanders & Bill Larson ISRU PM
- Tom Simon, OPTIMA lead
- Frank Schowengert, PISCES

- Rob Ambrose HRS PM
- Jackie Quinn, RESOLVE lead
- Michel Doyon, CSA

Field Test Objectives

- 1. Mobile Resource Characterization & Oxygen Demonstration (RESOLVE/Scarab)
 - Demonstrate resource prospecting, site surveying, and oxygen production
 - Demonstrate hardware integration and mobile surface operations
 - Opportunistic Demos: Hand-held Raman spectrometer (CSA); Mossbauer spectrometer (JSC) on Cratos rover; CHEMIN XRD/XRF (ARC/LANL)
- 2. OPTIMA (ISRU End-to End Outpost Scale Oxygen Production & Storage Field Test)
 - Demonstrate excavation and regolith delivery to ISRU plant
 - Demonstrate oxygen extraction from regolith at outpost production rate
 - Demonstrate system integration, modularity of modules for swapping, and surface operations
 - Opportunistic Demo: Cryogenic oxygen/methane storage, feed, and thruster firing
- 3. Demonstrate partnership with State of Hawaii and Pacific International Space Center for Exploration Systems (PISCES)

Customers

- CxPO Lunar Surface Systems Office
- SMD, OSEWG, and ESMD Lunar Scientist
- NASA ESMD Advanced Capabilities & Directorate Integration Office
- NASA Office of External Relations

ISRU Field Test Hardware for Nov. 2008

RESOLVE/Scarab Rover

TriDAR Navigation Sensor (Neptec)

LMA PILOT H₂ Reduction System

NASA Cryo O₂/CH₄ Storage-Feed System & 25 lbf thruster/igniter (Optional Test)

NASA ROxygen H₂ Reduction System

Education and Public Outreach

Education Outreach

- NASA personnel plan to visit several schools during out field test campaign.
- Presentations focus on NASA's return to the moon and learning to live off the land.
 - Need for Math and Science Education will be emphasized

Public Outreach

- NASA will provide presentations in the Center's Auditoriums on America's return to the moon.
- Demonstration of NASA's robotic excavation vehicles will be scheduled at the 'Imiloa Astronomy Center in Hilo
- Students will be given an opportunity to operate the rovers

Backup Slides

Experiment Details and Objectives

Mobile Resource Prospecting & Oxygen Production Objectives

Demonstrate resource prospecting, site surveying, and oxygen production demonstration activities

- Demonstrate Scarab rover carrying RESOLVE and TriDAR camera to multiple locations over varying terrain
- Demonstrate dark navigation
- Perform sample acquisition, transfer, metering, and sample evaluation
- Perform RESOLVE resource prospecting operations (drilling, crushing, volatile extraction, and capture) at multiple locations – 1 minimum, 3 nominal, 5 maximum
- Demonstrate remote drill site selection (Neptec TriDAR camera) and RESOLVE drill operation from CSA.

Demonstrate hardware integration and mobile surface operations

- Integration of complete RESOLVE unit onto Scarab rover
- Integration of TriDAR camera onto Scarab rover
- Build relationships and interactions with other NASA projects, industry, academia, international partners, and SMD

Opportunistic Demos:

- Evaluate incorporation of data from other science instruments with RESOLVE and TriDAR through SMD Moon and Mars Analog Mission Activity (MMAMA) and Canadian Space Agency (CSA)
 - Raman spectrometer (CSA)
 - Mossbauer spectrometer on Cratos rover to evaluate material before/after processing
 - Mini-CHEMIN XRD/XRF (hand carried) to evaluate material after processing (MMAMA)

Mobile Resource Prospecting & Oxygen Production (RESOLVE/Scarab) Tasks

- Demonstrate roving over multiple terrain features with complete RESOLVEscience payload
- Demonstrate dark navigation of Scarab over varied terrain and rock distribution
- Demonstrate drill site selection using TriDAR and Raman spectrometer via remote analysis at CSA PTOC
- Demonstrate remote operation of drill and sample transfer operations at CSA PTOC
- Demonstrate end-to-end operation of RESOLVE package
 - Min. of two times for resource prospecting: drilling, sample transfer, crushing, heating, volatile characterization; Max. 5 times
 - Min. of one time for oxygen extraction from regolith; Max. 3 times

Mobile Resource Characterization & Oxygen Demonstration Hardware

OPTIMA - Outpost Scale Oxygen Production & Storage Objectives

Demonstrate excavation and regolith delivery to/from ISRU plant

- LMA Bucketwheel rover (IR&D)
- NASA Cratos rover

Demonstrate oxygen extraction from regolith at outpost production rate

- NASA ROxygen fluidized bed + auger hydrogen reduction reactor makes oxygen at ~660 kg/year (2/3 scale for Outpost)
- LMA PILOT rotating hydrogen reduction reactor makes oxygen at 250 kg/year (1/4 scale for Outpost)

Demonstrate oxygen storage

- LMA liquefaction and storage with cryocooler and vacuum-jacketed tank (IR&D)
- NASA moderate pressure gas storage

Demonstrate system integration, modularity of modules for swapping, and surface operations

- Demonstrate feasibility of end-to-end oxygen extraction from regolith
- Demonstrate open architecture and modular approach with standardized interfaces between modules
- Integrate hardware from different projects and industry
- Build relationships and interactions with other projects and industry
- Begin discussions with international partners
- New NASA and industry partners for subsequent demonstrations

PILOT Field Test Hardware

PILOT - Precursor ISRU Lunar Oxygen Testbed

ROxygen Field Test Hardware

NASA ROxygen H₂ Reduction System

OPTIMA ROxygen & PILOT Tasks

- Demonstrate excavation and material delivery to plant and removal of spent regolith;
 - Increase distance and terrain complexity between plant and excavation site each day
- Demonstrate regolith processing to extract oxygen
 - Min. of 4 hrs on one day; nominal 8 hrs per day
 - Max. of 8 hrs/day for 5 days
- Demonstrate oxygen separation and storage
 - Liquefaction and cryogenic storage
 - Moderate pressure gaseous oxygen
- Opportunistic Demos
 - Demonstrate alternative oxygen liquefaction and storage
 - Hot fire a LO₂/LCH₄ RCS 25 lbf thruster igniter
 - Mossbauer spectrometer on Cratos to measure iron before and after processing

NASA Cryogenic RCS Thruster Testbed (Planned Add-on)

"Dust to Thrust"